
Межрегиональная олимпиада школьников на базе ведомственных образовательных организаций (2020 г.) Физика. 8 класс

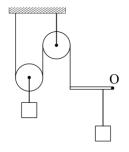
Вариант 1

 $3a\partial a va$ 1. (20 баллов). Велосипедист проехал первую треть пути со скоростью v_1 , а оставшуюся часть с какой-то другой скоростью. Найдите эту скорость, если известно, что средняя скорость его движения на всем пути равна v_{cp} .

Задача 2. (20 баллов). Невесомый рычаг, длина которого составляет l (смотри рисунок) находится в равновесии. На каком расстоянии от оси вращения (т. О) подвешен второй груз? Массы грузов m_1 и m_2 соответственно?

 $3a\partial a va$ 3. (20 баллов). Жидкостной барометр наполнен машинным маслом (850 кг/м³). Какой высоты был столб масла в этом барометре при нормальном атмосферном давлении?

Задача 4. (20 баллов). Два шара массами М и m (М>m), имеющих одинаковые объемы, связали невесомой и нерастяжимой нитью и опустили в сосуд с жидкостью. «Легкий» шар всплыл так, что в жидкости осталась лишь его η-я часть. «Тяжелый» шар, не касаясь дна, «повис» на вертикально ориентированной нити. Найти силу натяжения нити F, считая, что плотность жидкости неизменна от поверхности жидкости до дна сосуда.


 $3a\partial a va$ 5. (20 баллов). Какое количество теплоты Q нужно сообщить m=2.0 кг льда, взятого при температуре $t^0_{ \rm H}=-10^0 {\rm C}$, чтобы лед расплавить ($t^0_{ \rm пл}=0^0 {\rm C}$), а полученную воду нагреть до кипения ($t^0_{ \rm пр}=100^0 {\rm C}$) и выпарить? Удельная теплоемкость льда $c_{\rm \pi}=2,10~10^3~{\rm Дж/(кг}~{\rm K})$. Удельная теплоемкость воды $c_{\rm B}=4,19~10^3~{\rm Дж/(кг}~{\rm K})$. Удельная теплота плавления льда $\lambda_{\rm \pi}=3,35~10^5{\rm Дж/кг}$. Удельная теплота парообразования воды $r_{\rm B}=22,60~10^5{\rm Дж/кг}$.

Межрегиональная олимпиада школьников на базе ведомственных образовательных организаций (2020 г.) Физика. 8 класс

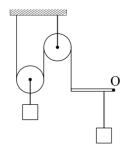
Вариант 2

Задача 1. (20 баллов). Автогонщик проехал последнюю треть пути со скоростью v_2 , а первую часть с какой-то другой скоростью. Найдите эту скорость, если известно, что средняя скорость его движения на всем пути равна v_{cp} .

Задача 2. (20 баллов). Невесомый рычаг, длина которого составляет l (смотри рисунок) находится в равновесии. На каком расстоянии от оси вращения (т. О) подвешен второй груз? Массы грузов m_1 и m_2 соответственно?

 $3a\partial a va$ 3. (20 баллов). Жидкостной барометр наполнен машинным маслом. Определите его плотность, если высота столба масла в этом барометре при нормальном атмосферном давлении равна h?

Задача 4. (20 баллов). Шар висит, не колеблясь, на невесомой пружине. После того, как под шар подставили сосуд с жидкостью плотности ρ_0 , было отмечено, что удлинение пружины уменьшилось в η раз(η >1). При этом заметили, что лишь μ –я часть объема шара погружена в жидкость. Найти плотность материала шара ρ .


 $3a\partial a va~5.~(20~баллов)$. В латунный калориметр массой $m_{\pi}=128~\Gamma$, содержащей $m_{\text{B}}=240~\Gamma$ воды при температуре $t^0_{\text{HB}}=8,4^0\text{C}$, опущено металлическое тело $m_{\text{M}}=192~\Gamma$, нагретое до температуры $t^0_{\text{HM}}=100,0^0\text{C}$. Окончательная температура, установившаяся в калориметре $t^0_{\text{K}}=21,5^0\text{C}$. Определить удельную теплоемкость $c_{\text{ит}}$ испытуемого тела. Удельная теплоемкость воды $c_{\text{B}}=4,19~10^3~\text{Дж/(кг}~\text{K})$. Удельная теплоемкость латуни $c_{\pi}=0,38~10^3~\text{Дж/(кг}~\text{K})$.

Межрегиональная олимпиада школьников на базе ведомственных образовательных организаций (2020 г.) Физика. 8 класс

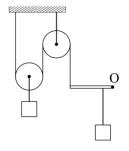
Вариант 3

Задача 1. (20 баллов). Спортсмен пробежал первую и последнюю четверть дистанции со скоростью v_1 , а среднюю часть с какой-то другой скоростью. Найдите эту скорость, если известно, что средняя скорость его движения на всем пути равна v_{cp} .

Задача 2. (20 баллов). Невесомый рычаг, длина которого составляет l (смотри рисунок) находится в равновесии. Второй груз подвешен на расстоянии x от оси вращения (т. О). Масса первого груза m_1 . Найти массу второго груза.

3адача 3. (20 баллов). На какой высоте находится аудитория, в которой вы находитесь, если показания барометра в ней равно P_A , а на поверхности земли P_3 ?

Задача 4. (20 баллов). Ко дну сосуда прикрепили невесомую и нерастяжимую нить. К другому концу нити прикрепили шар массой m и плотностью ρ . В сосуд налили жидкость плотности ρ_0 . Шар всплыл (натянув нить) так, что η –я часть объема шара находится в воде. Найти силу натяжения нити F.


Задача 5. (20 баллов). Найти массу m_{π} воды, превратившейся в пар, если в латунный калориметр массы $m_{\pi}=0.5$ кг, содержащий воду массы $m_{B}=1.0$ кг при температуре $t^{0}_{HB}=20,0^{0}$ С, влили расплавленный свинец массы $m_{c}=10.0$ кг при температуре его плавления $t^{0}_{\Pi\pi}=327,0^{0}$ С. Удельная теплоемкость воды $c_{B}=4.19\ 10^{3}$ Дж/(кг K). Удельная теплота парообразования воды $r_{B}=22,60\ 10^{5}$ Дж/кг. Удельная теплоемкость латуни $c_{\pi}=0.38\ 10^{3}$ Дж/(кг K). Удельная теплота плавления свинца $\lambda_{c}=0.25\ 10^{5}$ Дж/кг. Удельная теплоемкость свинца $c_{c}=0.13\ 10^{3}$ Дж/(кг K).

Межрегиональная олимпиада школьников на базе ведомственных образовательных организаций (2020 г.) Физика. 8 класс

Вариант 4

 $3a\partial a va~1.~(20~баллов)$. Пловец проплыл первую и последнюю четверть дистанции с некоторой одинаковой скоростью v_1 , а среднюю часть со скоростью v_2 . Найдите скорость v_1 , если известно, что средняя скорость его движения на всей дистанции равна v_{cp} .

Задача 2. (20 баллов). Невесомый рычаг, длина которого составляет l (смотри рисунок) находится в равновесии. Второй груз подвешен на расстоянии хот оси вращения (т. О). Масса второго груза m_2 . Найти массу первого груза.

Задача 3. (20 баллов). Аудитория в которой вы находитесь, находится на высоте h, рассчитайте показания барометра в ней, если на поверхности земли показания барометра P_3 ?

Задача 4. (20 баллов). Шарик массы m всплывает с постоянным ускорением а в жидкости, плотность которой в η раз больше плотности материала шарика (η> 1). Определить силу сопротивления жидкости F движению шарика, считая ее постоянной.

 $3a\partial a 4a$ 5. (20 баллов). В сосуде, теплоемкость которого C=0,63 кДж/К, находится вода массы $m_B=0,5$ кг и лед массы $m_\pi=0,25$ кг при температуре $t^0_{HB}=0,0^0$ С. Какая установится температура T в сосуде, если через воду пропустить водяной пар массы $m_\pi=0,09$ кг, нагретый до температуры $T_\pi=373$ К? Удельная теплоемкость воды $c_B=4,19$ 10^3 Дж/(кг K). Удельная теплота парообразования воды $r_B=22,60$ 10^5 Дж/кг. Удельная теплота плавления льда $\lambda_\pi=3,35$ 10^5 Дж/кг.